Where grasshopper lay eggs recipe

Where grasshopper lay eggs recipe

  • oversized back legs used for jumping
  • large compound eyes
  • fairly large size
  • it’s fluttery way of flying short distances
  • often grasshoppers make pops or snaps when they fly


When a female grasshopper is ready to lay her eggs, there’s hardly anyplace better for her to go than an open, sunny field. She needs soil to be loose enough for her to work her rear end into it. Once her rear end is well underground, while she is laying her eggs, a frothy, gluelike substance is deposited over them. This substance hardens around the eggs as it dries. The frothy mass, which can be called an egg pod, dries into something like a stiff sponge, so that when the eggs hatch there’ll be plenty of air for the newborn, and it won’t be too hard for the newborn to escape. The number of eggs in a pod varies from individual to individual, and species to species — maybe as few as six or so, or more than 150. Each female deposits several pods. Some species, instead of laying in pods, just cram them haphazardly here and there in the ground.

So, when young grasshoppers emerge from their eggs, they find themselves inside a honeycombed egg pod, and buried underground. They must push their delicate bodies upward through the soil, especially using their long back legs. During this process their bodies are covered by a membranous hatching skin, which to some degree both protects the body’s delicate parts, but also restricts movements of the legs, making it even harder to push upward.

At the ground’s surface, the hatching skin comes off, giving the legs full mobility. Grasshoppers undergo simple metamorphosis, so immature grasshoppers look more or less like adults, only smaller. As nymphs grow, they molt several times, shedding their “skins,” or exoskeletons. As with other insects that undergo simple metamorphosis, each progressive stage of nymph development is referred to as an “instar,” so we might speak of a 2nd instar grasshopper or a 4th instar one. The final molting results in a full-size adult with wings. Though it varies with species, five or six instar stages usually take place. The time from egg to adult typically is 40 to 60 days. That’s probably a 5th instar nymph in the picture below:

The above grasshopper is clearly a nymph because its wings are so short. The wing is the oval, finely pitted item appearing to issue from beneath the cape-like “back shield,” or prothorax. On an adult grasshopper the wings would project well beyond the abdomen’s rear end, but you can see that on this nymph it reaches only about a fourth of the distance.


Grasshoppers belong to the insect order Orthoptera, which also holds katydids, crickets, mantids, walkingsticks and cockroaches.

But, thing is, when you look at all the kinds of grasshoppers in the world along with all known grasshopper relatives, it becomes hard to decide where grasshoppers end and other insects, such as crickets and katydids, begin and end. According to the Peterson Field Guide A Field Guide to the Insects, here is one breakdown of the different kinds of grasshoppers found in North America:

found in North America

  • Short-horned Grasshoppers, family Acrididae
  • Long-horned Grasshoppers, family Tettigoniidae
    • Cone-headed Grasshoppers, subfamily Copiphorinae
    • Meadow Grasshoppers, subfamily Conocephalinae
    • Shield-backed Grasshoppers, subfamily Decticinae
  • Pygmy Grasshoppers, family Tetrigidae
  • Monkey Grasshoppers, family Tanaoceridae
  • Eumastacid Grasshopper, family Eumastacidae

Other field guides group them a little differently, plus some experts would refer to our “Meadow Grasshoppers” as “Meadow Katydids,” and make other similar name changes. The truth is that there’s no point to debate what’s a grasshopper and what’s not. The word “grasshopper” is standard English, but it has very little if any scientific value.

If you’d like to see the current breakdown of families and subfamilies in the Orthoptera, showing how grasshoppers mix in with crickets, katydids and the rest, check on the NCBI Taxonomy Browser’s Orthoptera Page.

You’ve probably heard of plagues of locusts and how sometimes vast clouds of them darken the sky. Locusts are grasshoppers. You may be interested in Naturalist Jim’s experience with locusts in Mexico, and seeing some pictures, as reported in his Naturalist Newsletter.


How to Get R >By Masha Goepel

There are few worse garden plagues than grasshoppers. These wretched little beasts devour everything in their path, mercilessly consuming huge quantities of greenery until your space is a wasteland. Seriously, these bugs are a gardening nightmare. Fortunately, there are natural ways to deter them, or reduce their numbers considerably. If you need to know how to get rid of grasshoppers, read on!

realworkhard / Pixabay

These insects have a voracious appetite, and they aren’t picky either. Unlike most garden pests, who pick and choose their meals, grasshoppers will eat almost anything. They’ll eat it all too: leaves, stems, flowers—nothing is safe from their chompy little jaws. Grasshoppers are a menace to any healthy garden.

So, how do you fight them while still keeping your garden safe for kids, butterflies, bees, and all? Grasshoppers may be hard to kill, but there are some organic tricks that can stop these monsters in their tracks!

First and foremost, let’s get to know our enemy a bit. What is it about grasshoppers that make them such an invasive pest?

Grasshoppers 101

Eating is what grasshoppers do best. They’ll eat half their body weight in greens each day, heedlessly decimating the world around them. Adults measure 1-5 inches in length, with hard, brownish-yellow bodies, and strong jaws. They have wings and powerful hind legs, which enable them to jump long distances.

Young grasshoppers—also known as nymphs—are smaller, greener versions of adults. They have wing-buds, but their wings are not yet fully formed.

Life Cycle

Adult grasshoppers lay their eggs at the end of the summer. The eggs are buried in the soil in pods, and wait through winter for their spring hatching. These egg pods are hardy even through extreme cold, unfortunately. Even if your winter temperatures were bitter, expect a spring hatching of hungry nymphs.

Cold, wet springs may slow hatching, however. Slow or late hatchings give a higher likelihood of mildew or fungus infestations on the young hoppers. We can only hope, right? Keep your fingers crossed!

As soon the nymphs hatch, they’ll start eating. At first, it may not seem like they’re doing too much damage. They’re so little that they’re almost cute. What’s a few leaves here or there? But grasshoppers grow fast, and their appetites grow faster. One classic study compares a moderate grasshopper population’s consumption to that of a full-grown cow.

Is There Anything They Don’t Eat?

Grasshoppers will eat almost any plant in your yard and garden. If you give them a choice, they prefer cereal grains like clover, oats, wheat, corn, rye and barley. But they’ll cheerfully settle for your grass, flowers, greens, beans, and broccoli as well.

Most grasshoppers will avoid eating cilantro, squash, peas, and tomato leaves. There are also a few flowers that actively repel grasshoppers. These blooms will discourage young invaders to hunt for greener pastures. But don’t count on these plants being entirely immune to a large, hungry grasshopper hatching. If they have few options, grasshoppers will eat almost anything.

After about 2 months of stuffing their faces, your little green nymphs are full-grown adults. Now, they’re even hungrier, and can fit more food in their bellies. They’ll continue to eat half their weight daily, lay their eggs, and eventually die as the weather cools. Next year, their offspring will hatch, and you’ll have a larger batch of grasshoppers to fight.

Unless you stop the cycle.

Breaking the Cycle

If you’re going to successfully protect your garden from grasshopper infestation, you’ll need to combine a few different methods.

No single method is 100% effective, but if you attack in two or three distinct ways, you can defeat them.

1. Environmental Attacks

Start out by making your garden less attractive to hungry young hoppers. Plant repellent flowers like moss roses, lilacs, forsythia, sage, and jasmine among the more attractive plants. Companion plant grasshopper favorites like lettuce, corn, and beans with squashes, peas and tomatoes.

Mixing less-desirable plants into your garden will make it less of an ideal habitat for these invaders.

Letting your lawn grass grow tall is another way of luring grasshoppers away. These insects prefer grass to garden variety leaves, so they might move to your lawn and away from your garden. This isn’t a permanent solution, but it might just save your vegetables.

2. Cover it up

Adding row covers to your garden beds can be a great way of protecting plants.

Only use this option if you currently have a grasshopper-free garden, though. Grasshoppers trapped inside row covers will be locked in an all-you-can-eat buffet.

When using row covers, keep all leaves well inside the cover to keep them safe from marauding grasshoppers.

3. Chop them Up

Rototilling in early spring, as soon as the ground is workable, will destroy many of the waiting egg pods in the earth. Remember that at this time, grasshopper nymphs haven’t hatched yet. They’re deep in the earth, waiting to hatch out and devour. If you till them up early enough, they’ll never have that chance.

Not all areas of the garden can be rototilled. If you have a lot of perennials, tilling might not be the best option for you. But tilling up the soil wherever you can will reduce the number of them hatching in spring.

4. Introduce Predators

Now, I know chickens can be pretty devastating to gardens as well, but they do decimate the grasshopper population. I keep my chickens out of the garden in late spring, summer, and early fall. After harvest, however, I let them run wild. Chickens love to scratch at the dirt, searching for insects, egg pods, and seeds.

A hungry flock of chickens can clear out grasshopper eggs before they hatch. If any escape, your springtime flock will find them.

Chickens eat grasshoppers throughout their life cycle. In late summer, your birds will chase down adult hoppers as happily as they scratched up the eggs in early spring.

Guinea Fowl

If you’re worried about keeping your garden safe from chickens, try introducing guinea fowl instead. These birds don’t scratch up the earth as chickens do, but they’re voracious hunters. Guineas can clear a large area of grasshoppers, ticks, and other insects easily.

Note that guineas are wilder than chickens. They tend to roam farther, and they’re not as friendly. They’re also loud birds. As such, if you live in the suburbs, chickens are a safer choice.

But guineas are more effective insect controllers, and they won’t damage your garden. They lay small, teardrop-shaped eggs that taste delicious. If you’re gardening in the country, definitely get to know these unique birds

Dust, Traps, and Topical Applications

Organic favorites like insecticidal soap and diatomaceaous earth aren’t going to work on grasshoppers. These insects have tough, hard bodies that resist gentle approaches.

5. Effective Sprays

Another organic favorite—Neem—has mixed reviews. Neem oil may help disrupt the hoppers’ life cycle by producing an insect ennui among the invasive pests. It reduces appetite, deters breeding, and in general causes insects to give up on life.

Some gardeners have not seen as strong of an effect on grasshoppers, but others use Neem successfully. The trick, in my experience, is to apply a Neem oil spray early in the season. Nymphs are softer, weaker, and more impressionable than adult grasshoppers. The oil affects them better than it does their elders.

Highly concentrated garlic sprays are also effective in deterring grasshoppers who, like vampires, loath the scent of garlic. Coat the whole plant with garlic spray to drive away hunger grasshoppers. Be sure to use this method early in the season if you don’t want all your produce to taste like garlic.

Like beer traps for slugs, grasshopper traps lure the insect in with the promise of food. A half-buried jar of molasses and water attracts the greedy insect. He hops in to munch molasses and drowns in the water.

To make a molasses trap, fill a quart-sized mason jar with 1 part molasses and 10 parts water. Bury it halfway in the ground near the plants your grasshoppers are attacking. Check the trap at least once a week, or once a day if you have a serious infestation. Refresh as necessary.

One of the most effective ways to fight an active infestation of grasshoppers is with flour dust. Yes, really! Grab a fluffy paint brush or a makeup brush and a jar of flour, and start painting your plants’ leaves. You don’t need a lot of flour—just a dusting is enough. Apply in dry weather, and watch your grasshopper population start to die.

Four gums up the mouths of grasshoppers. Think of making paper-mache as a kid: flour and water make a glue that seals up the paper-mache craft. Well, flour and grasshopper saliva make a glue too, and then the insects can’t eat anymore. Give it a try!

Combine two or three of these methods to keep your garden safe and the devouring hoards at bay. With a little bit of work you’ll be ready to defend your garden from invasion. Even better, you can teach others how to get rid of grasshoppers in their spaces. Before you know it, your entire neighborhood will be free from them indefinitely.


A Grasshopper’s Life Cycle

The grasshopper is a flying animal belonging to order Orthoptera and class Insecta. About 11,000 species exist. They are herbivorous and commonly seen in autumn; a few appear in summer and spring. During mating the male grasshopper deposits sperm into the female’s vagina, which finds its way to the eggs through canals known as micropyles. An adult grasshopper goes through the stages egg, nymph and adult, and has a lifespan of approximately one year.

This is the initial stage of a grasshopper’s life cycle. The mother grasshopper lays fertilized eggs in midsummer, and they remain 1 or 2 inches under the sand or in leaf litter. She sprinkles them with a sticky semisolid substance that sets to form an egg pod. Each egg pod contains 15 to 150 eggs, depending on the species. Normally a female grasshopper can lay up to 25 pods. The eggs remain underneath for about 10 months in autumn and winter before hatching into nymphs during spring or in the initial days of summer.

This is the second stage of the grasshopper’s life cycle and the initial stage during which a young grasshopper sees the outside world. Nymphs look like adult grasshoppers, called molts, apart from the fact that they are wingless and lack reproductive organs. They undergo five substages known as instars before fully developing into adult grasshoppers; each instar is characterized by shedding of the cuticle skin and gradual growth of wings. In order to survive, nymphs start to feed on succulent and soft plant foliage barely one day after hatching from the egg. This stage lasts for about five to six weeks before the young nymphs mature to adult grasshoppers.

Molting takes place during the nymph stage. The locust sheds its exoskeleton before maturing into an adult. While the exoskeleton covers the nymph’s body, providing it with protection against external injuries, it inhibits its growth because of its rigidity and inability to give room for expansion. The nymph has to shed it in order to achieve growth. It undergoes five to six molts in which it changes its structure and form before reaching adulthood.

This is a fully grown grasshopper. It takes about one month before the wings are fully developed. The mature grasshopper is more mobile than the nymph, a characteristic that helps them to hunt and flee from predators. The reproductive organs are fully grown, so the females can lay eggs and the males can fertilize. However, female grasshoppers do not lay eggs until they are 1 or 2 weeks old, to allow them to gain enough weight before they start laying eggs. Once she starts laying eggs, the female continues to lay eggs at intervals of three to four days until she dies. Adult grasshoppers live for about two months, depending on the weather.


Insects, Their Ways and Means of Living/Chapter I

Their Ways and Means of Living

Sometime in spring, earlier or later according to the latitude or the season, the fields, the lawns, the gardens, suddenly are teeming with young grasshoppers. Comical little fellows are they, with big heads, no wings, and strong hind legs (Fig. 1). They feed on the fresh herbage and hop lightly here and there, as if their existence in no way involved the mystery of life nor raised any questions as to why they are here, how they came to be here, and whence they came. Of these questions, the last is the only one to which at present we can give a definite answer.

If we should search the ground closely at this season, it might be possible to see that the infant and apparently motherless grasshoppers are delivered into the visible world from the earth itself. With this information, a nature student of ancient times would have been satisfied—grasshoppers, he would then announce, are bred spontaneously from matter in the earth; the public would believe him, and thereafter would countenance no contrary opinion. There came a time in history, however, when some naturalist succeeded in overthrowing this idea and established in its place the dictum that every life comes from an egg. This being still our creed, we must look for the grasshopper’s egg.

​ The entomologist who plans to investigate the lives of grasshoppers finds it easier to begin his studies the year before; instead of sifting the earth to find the eggs from which the young insects are hatched in the spring, he observes the mature insects in the fall and secures a supply of eggs freshly laid by the females, either in the field or in cages properly equipped for them. In the laboratory then he can closely watch the hatching and observe with accuracy the details of the emergence. So, let us reverse the calendar and take note of what the mature grasshoppers of last season’s crop are doing in August and September.

Fig. 1. Young grasshoppers

Fig. 2. The end of the body of a male and a female grasshopper
The body, or abdomen, of a male (A) is bluntly rounded; that of the female (B) bears two pairs of thick prongs, which constitute the egg-laying organ, or ovipositor (Ovp)

Fig. 3. The female grasshopper in the position of depositing a pod of eggs in a hole in the ground dug with her ovipositor. (Drawn from a photograph in U. S. Bur. Ent.)

When the female grasshopper is ready to deposit a batch of eggs, she selects a suitable spot, which is almost any place in an open sunny field where her ovipositor can penetrate the soil, and there she inserts the tip of her organ with the prongs tightly closed. When the latter are well within the ground, they are probably spread apart so as to compress the earth outward, for the drilling ​ process brings no detritus to the surface, and gradually the end of the insect’s body sinks deeper and deeper, until a considerable length of it is buried in the ground (Fig. 3).

Now all is ready for the discharge of the eggs. The exit duct from the tubes of the ovary, which are filled with eggs already ripe, opens just below and between the bases of the lower prongs of the ovipositor, so that, when the upper and lower prongs are separated, the eggs escape from the passage between them. While the eggs are being placed in the bottom of the well, a frothy gluelike

Fig . 4. Egg pods of a grasshopper, showing various shapes: one opened exposing the eggs within. (Much enlarged)

Fig . 5. Eggs of a grasshopper; one split at the upper end, showing the young grasshopper about to emerge

Within each egg is the germ that is to produce a new grasshopper. This germ, the living matter of the egg, is but a minute fraction of the entire egg contents, for the bulk of the latter consists of a nutrient substance, called yolk, the purpose of which is to nourish the embryo as it develops. The tiny germ contains in some form, that even the strongest microscope will not reveal, the properties which will determine every detail of structure in the future grasshopper, except such as may be caused by external circumstances. It would be highly interesting to follow the course of the development of the embryo insect within the egg, and most of the important facts about it are known; but the story would be entirely too long to be given here, though a few things about the grasshopper’s development should be noted.

​ The egg germ begins its development as soon as the eggs are laid in the fall. In temperate or northern latitudes, however, low temperatures soon intervene and development is thereby checked until the return of warmth in the spring—or until some entomologist takes the eggs into an artificially heated laboratory. The eggs of some species of grasshoppers, if brought indoors before the advent of freezing weather and kept in a warm place, will proceed with their development, and young grasshoppers will emerge from them in about six weeks. On the other hand, the eggs of certain species, when thus created, will not hatch at all, the embryos within them math a certain stage of development and there they stop, and most of them never will resume their growth unless they are subjected to a freezing temperature! But, after a thorough chilling, the young grasshoppers will come out, even in January, if the eggs are then transferred to a warm place.

To refuse to complete its development until frozen and then warmed seems like a preposterous bit of inconsistency on the part of an insect embryo; but the embryos of many kinds of insects besides the grasshopper have this same habit from which they will not depart, and so we most conclude that it is not a whim, but a useful physiological property with which they are endowed. The special deity of nature delegated to look after living creatures knows well that Boreas sometimes oversleeps and that an egg laid in the fall, if it depended entirely on warmth for its development, might hatch that same season if mild weather should continue. And then, what chance would the poor fledgling have when a delayed winter comes upon it? None at all, of course, and the whole scheme for perpetuation of the species would be upset. But, if it is so arranged that development within the egg can reach completion only after the chilling effect of freezing weather, the emergence of the young insect will be deferred until the return of warmth in the spring, and thus the species will have a guarantee that its members will not be cut down by ​ unseasonable hatching. There are, however, species not thus insured, and these do suffer losses from fall hatching every time winter makes a late arrival. Eggs laid in the spring are designed to hatch the same season, and the eggs of species that live in warm climates never require freezing for their development.

Fig. 6. Young grasshopper emerging from its eggshell

The tough shell of the grasshopper’s egg is composed of two distinct coats, an outer, thicker, opaque one of a pale brown color, and an inner one which is thin and transparent. Just before hatching, the outer coat splits open in an irregular break over the upper end of the egg, and usually half or two-thirds of the way down the flat side. This outer coat can easily be removed artificially, and the inner coat then appears as a glistening capsule, through the semitransparent walls of which the little grasshopper inside can be seen, its members all tightly folded beneath its body. When the hatching takes place normally, however, both layers of the eggshell are split, and the young grasshopper emerges by slowly making its way out of the cleft (Fig. 6).

Newly-hatched grasshoppers that have come out of eggs which some meddlesome investigator has removed from their pods for observation very soon proceed to shed an outer skin from their bodies. This skin, which is already loosened at the time of hatching, appears now as a rather tightly fitting garment that cramps the soft legs and feet of the delicate creature within it. The latter, however, after a few forward heaves of the body, accompanied by expansions of two swellings on the back of the neck (Fig. 6), succeeds in splitting the skin over the neck and the back of the head, and the pellicle then rapidly shrinks and slides down over the body. The insect, thus first exposed, ​ liberates itself from the shriveled remnant of its hatching skin, and becomes a free new creature in the world. Being a grasshopper, it proceeds to jump, and with its first efforts clears a distance of four or five inches, something like fifteen or twenty times the length of its own body.

When the young locusts hatch under normal undisturbed conditions, however, we must picture them as coming out of the eggs into the cavernous spaces of the egg pod, and all buried in the earth. They are by no means yet free creatures, and they can gain their liberty only by burrowing upward until they come out at the surface of the ground. Of course, they are not very far beneath the surface, and most of the way will be through the easily penetrated walls of the cells of the egg covering. But above the latter is a thin layer of soil which may be hard-packed after the winter’s rains, and breaking through this layer can not ordinarily be an easy task. Not many entomologists have closely watched the newly-hatched grasshopper emerge from the earth, but Fabre has studied them under artificial conditions, covered with soil in a glass tube. He tells of the arduous efforts the tiny creatures make, pressing their delicate bodies upward through the earth by means of their straightened hind legs, while the vesicles on the back of the neck alternately contract and expand to widen the passage above. All this, Fabre says, is done before the hatching skin is shed, and it is only after the surface is reached and the insect has attained the freedom of the upper world that the inclosing membrane is cast off and the limbs are unencumbered.

The things that insects do and the ways in which they do them are always interesting as mere facts, but how much wiser might we be if we could discover why they do them! Consider the young locust buried in the earth, for example, scarcely yet more than an embryo. How does it know that it is not destined to live here in this dark cavity in which it first finds itself? What force activates the mechanism that propels it through the earth? And finally, ​ what tells the creature that liberty is to be found above, and not horizontally or downward? Many people believe that these questions are not to be answered by human knowledge, but the scientist has faith in the ultimate solution of all problems, at least in terms of the elemental forces that control the activities of the universe.

We know that all the activities of animals depend upon the nervous system, within which a form of energy res >

Fig. 7. Eggs of a species of katydid attached to a twig; the young insect in the successive stages of emerging from an egg; and the newly-hatched young

Insects hatched from eggs laid in the open may begin life under conditions a little easier than those imposed upon the young grasshopper. Here, for example (Fig. 7), are some eggs of insects belonging to the katydid family. They look like flat oval seeds stuck in overlapping rows, some on a twig, others along the edge of a leaf. When about to hatch, each egg splits halfway down one edge and crosswise on the exposed flat surface, allowing a flap to open on this side, which gives an easy exit to the young insect about to emerge. The latter is inclosed in a delicate transparent sheath, within which its long legs and antennae are closely doubled up beneath the body; but when the egg breaks open, the sheath splits also, and as the young insect emerges it sheds the skin and leaves it within the shell. The new creature has nothing to do now but to stretch its long legs, upon which it walks away, and, if given suitable food, it will soon be contentedly feeding.

Let us now take closer notice of the little grasshoppers (Fig. 8) that have just come into the great world from the dark subterranean chambers of their egg-pods. Such an inordinately large head surely, you would say, must overbalance the short tapering body, though supported on three pairs of legs. But, whatever the proportions, nature’s works never have the appearance of being out of drawing; because of some law of recompense, they never give you the uneasy feeling of an error in construction. In spite of its enormous head, the grasshopper infant is an agile creature. Its six legs are all attached to the part of the body immediately behind the head, which is known as the thorax (Fig. 63, Th), and the rest of the body, called the abdomen (Ab), projects free without support. An insect, according to its name, is a creature divided into parts, for “insect” means “in-cut.” A fly or a wasp, therefore, comes closer to being the ideal insect; but, while not literally insected between the thorax and abdomen, the grasshopper, like the fly and the wasp and all other insects, consists of a ​ head, a thorax bearing the legs, and a terminal abdomen (Fig. 63). On the head is located a pair of long, slender antennae (Ant) and a pair of large eyes (E). Winged insects have usually two pairs of wings attached to the back of the thorax (W 2 , W 3 ).

Fig . 8. A young grasshopper, or nymph, in the second stage after hatching

Fig . The metamorphosis of a grasshopper, Melanoplus atlanus, showing its six stages of development from the newly-hatched nymph to the fully-winged adult. (Twice natural size)

Most young insects grow rapidly because they must compress their entire lives within the limits of a single season. Generally a few weeks suffice for them to reach maturity, or at least the mature growth of the form in which they leave the egg, for, as we shall see, many insects complicate their lives by having several different stages, in each of which they present quite a different form. The grasshopper, however, is an insect that grows by a direct course from its form at hatching to that of the adult, and at all stages it is recognizable as a grasshopper (Fig. 9). A young moth, on the other hand, hatching in the ​ form of a caterpillar, has no resemblance to its parent, and the same is true of a young fly, which is a maggot, and of the grublike young of a bee. The changes of form that insects undergo during their growth are known as metamorphosis. There are different degrees of such transformation; the grasshopper and its relatives have a simple metamorphosis.

An insect differs from a vertebrate animal in that its muscles are attached to its skin. Most species of insects have the skin hardened by the formation of a strong outside cuticula to give a firm support to the muscles and to resist their pull. This function of the cuticula, however, imposes a condition of permanency on it after it is once formed. As a consequence the growing insect is confronted with the alternatives, after reaching a certain size, of being cramped to death within its own skin, or of discarding the old covering and getting a new and larger one. It has adopted the course of expedlency, and periodically molts. Thus it comes about that the life of an insect progresses by stages separated by the molts, or the shedding of the cuticula.

The grasshopper makes six molts between the time of hatching and its attainment of the final adult form, a period of about six weeks, and goes through six post-embryonic stages (Fig. 9). The first molt is the shedding of the embryonic skin, which, we have seen, takes place normally as soon as the young insect emerges from the earth. The grasshopper now lives uneventfully for about a week, feeding by preference on young clover leaves, but taking almost any green thing at hand. During this time its abdomen lengthens by the extension of the membranes between its segments, but the hard parts of the body do not change either in size or in shape. At the end of seven or eight days, the insect ceases its activities and remains quiet for a while until the cuticula opens in a lengthwise split over the back of the thorax and on the top of the head. The dead skin is then cast off, or rather, the ​ grasshopper emerges from it, carefully pulling its legs and antennae from their containing sheaths. The whole process consumes only a few minutes. The emerged grasshopper is now entering its third stage after hatching, but the shedding of the hatching skin is usually not counted in the series of molts, and the first subsequent molt, then, we will say, ushers it into its second stage of aboveground life. In this state the insect is different in some respects from what it was in the first stage: it is not only larger, but the body is longer in proportion to the size of the head, as are also the antennae, and particularly the hind legs. Again the insect becomes active and pursues its routine life for another week; then it undergoes a second molting, accompanied by changes in form and proportions that make it a little more like a mature grasshopper. After shedding its cuticula on three succeeding occasions, it appears in the adult form, which it will retain throughout the remainder of its life.

The grasshopper developed its legs, its antennae, and most of its other organs while it was in the egg. It was hatched, however, without wings, and yet, as everyone knows, most full-grown grasshoppers have two pairs of wings (Fig. 63, W 2 , W 3 ), one pair attached to the back of the middle segment of the thorax, the other to the third segment. It has acquired its wings, therefore, during its growth from youth to maturity, and by examining the insect in its different stages (Fig. 9), we may learn something of how the wings are developed. In the first stage, evidence of the coming wings is scarcely apparent, but in the second, the lower hind angles of the plates covering the back of the second and third thoracic segments are a little enlarged and project very slightly as a pair of lobes. In the third stage, the lobes have increased in size and may now be suspected of being rudiments of the wings, which, indeed, they are. At the next molt, when the insect enters its fourth stage, the little wing pads are turned upward and laid over the back, which disposition not only ​ reverses the natural position of the wings, but brings the hind pair outside the front pair. At the next molt, the wings retain their reversed positions, but they are once more increased in size, though they still remain far short of the dimensions of the wings of an adult grasshopper. At the time of the last molt, the grasshopper takes a position with its head downward on some stem or twig, which it grasps securely with the claws of its feet. Then, when its cuticula splits, it crawls downward out of the skin. Once free, however, it reverses its position, and the wisdom of this act is seen on observing the rapidly expanding and lengthening wings, which can now hang downward and spread out freely without danger of crumpling. In a quarter of an hour the wings have enlarged from small, insignificant pads to long, thin, membranous fans that reach to the tip of the body. This rapid growth is explained by the fact that the wings are hollow sacs; their visible increase in size is a mere distention of their wrinkled walls, for they were fully formed beneath the old cuticula and lay there before the molt as little crumpled wads, which, when released by the removal of the cases that cramped them, rapidly spread out to their full dimensions. Their thin, soft walls then come together, dry, and harden, and the limp, flabby bags are converted into organs of flight.

It is important to understand the process of molting as it takes place in the grasshopper, because the processes of metamorphosis, such as those which accomplish the transformation of a caterpillar into a butterfly, differ only in degree from those that accompany the shedding of the skin between any two stages of the grasshopper’s life. The principal growth of the insect is made during those resting periods preceding the molts. It is then that the various parts enlarge and make whatever alterations in shape they are to have. The old cuticula is already loosened and the changes go on beneath it, while at the same time a new cuticula is generated over the remodeled surfaces. The ​ increased size of the antennae, legs, and wings causes them to be compressed in the narrow space between the new and the old cuticula, and, when the latter is cast off, the crumpled appendages expand to their full size. The observer then gets the impression that he is witnessing a sudden transformation. The impression, however, is a false one; what is really going on is comparable with the display of new dresses and coats that the merchant puts into his show windows at the proper season for their use, which he has just unpacked from their cases but which were produced in the factories long before.

The adult grasshoppers lead prosaic lives, but, like a great many good people, they fill the places allotted to them in the world, and see to it that there will be other occupants of their own kind for these same places when they themselves are forced to vacate. If they seldom fly high, it is because it is not the nature of locusts to do so; and if, in the East, one does sometimes soar above his fellows, he accomplishes nothing, unless he happens to land on the upper regions of a Manhattan skyscraper, when he may attain the glory of a newspaper mention of his exploit—most likely, though, with his name spelled wrong.

On the other hand, like all common folk born to obscurity and enduring impotency as individuals, the grasshopper in masses of his kind becomes a formidable creature. Plagues of locusts are of historic renown in countries south of the Mediterranean, and even in our own country hordes of grasshoppers known as the Rocky Mountain locust did such damage at one time in the States of the Middle West that the government sent out a commission of entomologists to investigate them. This was in the years following the Civil War, when, for some reason, the locusts that normaily inhabited the Northwest, east of the Rocky Mountains, became dissatisfied with their usual breeding grounds and migrated in great swarms into the States of the Mississippi valley, where they brought destruction to ​ all kinds of crops wherever they chanced to alight. In the new localities they would lay their eggs, and the young of the next season, after acquiring their wings, would migrate back toward the region whence the parent swarm had come the year before.

The entornologists of the investigating commission in the vear 1877 tell us that on a favorable day the migrating locusts “rise early in the forenoon, from eight to ten o’clock, and settle down to eat from four to five in the afternoon. The rate at which they travel is variously estimated from three to fifteen or twenty miles an hour, determined by the velocity of the wind. Thus, insects which began to fly in Montana by the middle of July may not reach Missouri until August or early September, a period of about six weeks elapsing before they reach their destined breeding grounds.” The appearance of a swarrn in the air was described as being like that of “a vast body fleecy clouds,” or a “cloud of snowflakes,” the mass of flying insects “often having a depth that reaches from comparatively near the ground to a height that baffles the keenest eye to distinguish the insects in the upper stratum.” It was estimated that the locusts could fly at an elevation of two and a half miles from the general surface of the ground, or 15,000 feet above sea level. The descending swarm falls upon the country “like a plague or a blight,” said one of the entomologists of the commission, Dr. C. V. Riley, who bas left us the following graphic picture of the circumstances:

The farmer plows and plants. He cultivates in hope, watching his growing grain in graceful, wave-like motion wafted to and fro by the warm summer winds. The green begins to golden; the harvest is at hand. Joy lightens his labor as the fruit of past toil is about to be realized. The day breaks with a smiling sun that sends his ripening rays through laden orchards and promising fields. Kine and stock of every sort are sleek with plenty, and all the earth seems glad. The day grows. Suddenly the sun’s face is darkened, and clouds obscure the sky. The joy of the morn gives way to ominous fear. The day closes, and ravenous Iocust-swarms have fallen upon the land. The ​ morrow comes, and, ah! what a change it brings! The fertile land of promise and plenty has hecome a desolate waste, and old Sol, even at his hightest, shines sadly through an atmosphere alive with myriads of glittering insects.

Even today the farmers of the Middle Western States are often hard put to it to harvest crops, especially alfalfa and grasses, from fields that are teeming with hungry grasshoppers. By two means, principally, they seek relief from the devouring hordes. One method is that of driving across the fields a device known as a “hopperdozer,” which collects the insects bodily and destroys them. The dozer consists essentially of a long shallow pan, twelve or fifteen feet in length, set on low runners and provided with a high back made either of metal or of cloth stretched over a wooden frame. The pan contains water with a thin film of kerosene over it. As the dozer is driven over the field, great numbers of the grasshoppers that fly up before it either land directly in the pan or fall into it after striking the back, and the kerosene film on the water does the rest, for kerosene even in very small quantity is fatal to the insects. In this manner, many bushels of dead locusts are taken often from each acre of an alfalfa field; but still great numbers of them escape, and the dozer naturally can not be used on rough or uneven ground, in pastures, or in fields with standing crops. A more generally effective method of killing the pests is that of poisoning them. A mixture is prepared of bran, arsenic, cheap molasses, and water, sufficiently moist to adhere in small lumps, with usually some substance added which is supposed to make the “mash” more attractive to the insects. The deadly bait is then finely broadcast over the infested fields.

While such methods of destruction are effective, they bear the crude and commonplace stamp of human ways. See how the thing is done when insect contends against insect. A fly, not an ordinary fly, but one known to entomologists as Sarcophaga kellyi (Fig. 10), being named after Dr. E. O. G. Kelly, who has given us a ​ description of its habits, frequents the fields in Kansas where grasshoppers are abundant. Indiv >

Fig . 10. A fly whose larvae are parasitic on grasshoppers, Sarcophaga kellyi. (Much enlarged)

In form, the young Sarcophaga kellyi does not differ particularly from the maggots of other kinds of flies, but the Sarcophaga flies in general differ from most other insects in that their eggs are hatched within the bodies of the females, and these flies, therefore, give birth to young maggots instead of iaying eggs. The female of Sarcophaga kellyi, then, when she launches her attack on the flying grasshopper, is munitioned with a load of young maggots ready to be discharged and stuck by the moisture of their ​ bodies to the object of contact. The young parasites thus palmed off by their mother on the grasshopper, who has no idea what has happened to him, make their way to the base of the wing of their unwitting host, where they find a tender membranous area which they penetrate and thereby enter the body of the victim. Here they feed upon the liquids or tissues of the now helpless insect and grow to maturity in from ten to thirty days. Meanwhile, however, the grasshopper bas died; and when the parasites are full grown, they leave the dead body and bury themselves in the earth to a depth of from two to six inches. Here they undergo the transformation that will give them the form of their parents, and when they attain this stage they issue from the earth as adult winged flies. Thus, one insect is destroyed that another may live.

ls the Sarcophaga kellyi a creature of uncanny shrewdness, an ingenious inventor of a novel way for avoiding the work of caring for her offspring? Certainly her method is an improvement on that of leaving one’s newborn progeny on a stranger’s doorstep, for the victim of the fly must accept the responsibility thrust upon him whether he will or not. But Doctor Kelly tells us that the flies do not know grasshoppers from other flying insects, such as moths and butterflies, in which their maggots do not find congenial hosts and never reach maturity. Furthermore, he says, the ardent fly mothers will go after pieces of crumpled paper thrown into the wind and will discharge their maggots upon them, to which the helpless infants cling without hope of survival. Such performances, and many similar ones that could be recounted of other insects, show that instinct is indeed blind and depends, not upon foresight, but on some mechanical action of the nervous system, which gives the desired result in the majority of cases but which is not guarded against unusual conditions or emergencies.

When we consider the many perfected instincts among insects, we are often shocked to find apparent cases of ​ flagrant neglect on the part of nature for her creatures, where it would seem a remedy for their ills would be easy to supply.

In human society of modern times the criminal element has come to look no different from the law-ab >

Fig 11. Two blister beetles whose larvae feed on grasshopper eggs. (Twice natural size)
A. Epicauta marginata. B, Epicauta vittata

Fig . 12. The first-stage larva, or “triungulin,” of the striped blister beetle (fig. 11 B). Enlarged 12 times.
(From Riley)

From July till the middle of October the eggs are being laid in the ground in loose, irregular masses of about 130 on an average—the female excavating a hole for the purpose, and afterwards covering up the mass by scratching with her feet. She lays at several different intervals, producing in the aggregate probably from four to five hundred ova. She prefers for purposes of oviposition the very same warm sunny locations chosen by the locusts, and doubtless instinctively places ner eggs near those of these last, as I have on several occasions found them in close proximity. In the course of about 10 days—more or less according to the temperature of the ground—the first larva or triungulin hatches. These little triungulins (Fig. 12), at first feeble and perfectly white, soon assume their natural light-brown color and commence to move about. At night, or during cold or wet weather, all those of a batch huddle together with little motion, but when warmed by the sun they become very active, running with their long legs over the ground, and prying with their large heads and strong jaws into every crease and crevice in the soil, into which, in due time, they burrow ​ and hide. As becomes a carnivorous creature whose prey must be industriously sought, they display great powers of endurance, and will survive for a fortnight without food in a moderate temperature. Yet in the search for locust eggs many are, without doubt, doomed to perish, and only the more fortunate succeed in finding appropriate diet.

Reaching a locust egg-pod, our triungulin, by chance, or instinct, or both combined, commences to burrow through the mucous neck, or covering, and makes its first repast thereon. If it bas been long in search, and its jaws are well hardened, it makes quick work through this porous and cellular matter, and at once gnaws away at an egg, first devouring a portion of the shell, and then, in the course of two or three days, sucking up the contents. Should two or more triungulins enter the same egg-pod, a deadly conflict sooner or later ensues until one alone remains the victorious possessor.

The surviving triungulin then attacks a second egg and more or less completely exhausts its contents, when, after about eight days from the time of its hatching, it ceases

Fig . 13. The second-stage larva of the striped blister beetle.
(Frorn Riley)

The grasshoppers’ eggs furnish food for many other insects besides the young blister beetles. There are species of flies and of small wasplike insects whose larvae feed in the egg-pods in much the same manner as do the triungulins, and there are still other species of general feeders that devour the locust eggs as a part of their miscellaneous diet. Notwithstanding all this destruction of the germs of their future progeny, however, the grasshoppers still thrive in abundance, for grasshoppers, like most other insects, put their trust in the admonition that there is safety in numbers. So many eggs are produced and stored away in the ground each season that the whole force of their enemies combined can not destroy them all, and enough are sure to come through intact to render certain the continuance of the species. Thus we see that nature has various ways of accomplishing her ends—she might have given the grasshopper eggs better protection in the pods, but, being usually careless of individuals, she chose to guarantee perpetuance with fertility.


No Comments

Leave a Reply

Your e-mail will not be published. All fields are required.